Thermal-activation model for freezing and the elastic robustness of bulk metallic glasses

نویسندگان

  • P. M. Derlet
  • R. Maaß
چکیده

Despite significant atomic-scale heterogeneity, bulk metallic glasses well below their glass transition temperature exhibit a surprisingly robust elastic regime and a sharp elastic-to-plastic transition. Here it is shown that, when the number of available structural transformations scales exponentially with system size, a simple thermal-activation model is able to describe these features, where yield corresponds to a change from a barrier energy dominated to a barrier entropy dominated regime of shear transformation activity, allowing the system to macroscopically exit its frozen state. A yield criterion is then developed, which describes well the existing experimental data and motivates future dedicated deformation experiments to validate the model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of the activation energy of crystallization based up on Ozawa and Kissinger formalisms and thermal stability of V2O5-NiO- TeO2 glasses by differential scanning calorimetry (DSC)

In the present research work, (60-x)V2O5-xNiO-40TeO2 amorphous bulk compositions with different molar percentages of 0≤x≤20 mol%, were prepared by well-known  rapid melt-quenching method. Differential scanning calorimetry (DSC) at different heating rates (φ) was used to thermal analyze and to obtain more insight in to the thermal stability, glass forming tendency and so calorimetric characteris...

متن کامل

Approaching the ideal elastic limit of metallic glasses

The ideal elastic limit is the upper bound to the stress and elastic strain a material can withstand. This intrinsic property has been widely studied for crystalline metals, both theoretically and experimentally. For metallic glasses, however, the ideal elastic limit remains poorly characterized and understood. Here we show that the elastic strain limit and the corresponding strength of submicr...

متن کامل

Bulk metallic glass composite with good tensile ductility, high strength and large elastic strain limit

Bulk metallic glasses exhibit high strength and large elastic strain limit but have no tensile ductility. However, bulk metallic glass composites reinforced by in-situ dendrites possess significantly improved toughness but at the expense of high strength and large elastic strain limit. Here, we report a bulk metallic glass composite with strong strain-hardening capability and large elastic stra...

متن کامل

Evaluation of the Elastic Properties of Bulk Metallic Glasses

The development of bulk metallic glasses as a prominent class of functional and structural materials has attracted considerable interest in the last years. One of the fundamental physical quantities necessary to describe the mechanical properties of the materials is the bulk modulus. In the present article, a simple method to estimate the bulk modulus and its pressure derivative is proposed. It...

متن کامل

Finite Difference Method for Biaxial and Uniaxial Buckling of Rectangular Silver Nanoplates Resting on Elastic Foundations in Thermal Environments Based on Surface Stress and Nonlocal Elasticity Theories

In this article, surface stress and nonlocal effects on the biaxial and uniaxial buckling of rectangular silver nanoplates embedded in elastic media are investigated using finite difference method (FDM). The uniform temperature change is utilized to study thermal effect. The surface energy effects are taken into account using the Gurtin-Murdoch’s theory. Using the principle of virtual work, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011